Bringing Benefits Together

Capturing the Value(s) Of Raindrops Where They Fall

Steve Wise, Natural Resources Program Manager Center for Neighborhood Technology swise@cnt.org

The Center for Neighborhood Technology

28 year old Chicago-based non-profit

Promotes economic development that is environmentally sustainable through:

- Research
- Advocacy
- Demonstration projects

Green Infrastructure agenda
 Planning/Analysis Toolbox
 Policy
 Education

Practice

Energy Analogy: Pacific NW Electricity

1970s Capacity Shortages Predicted

• Large Nuclear Infrastructure proposed, started

Energy Analogy: Pacific NW Electricity

Seattle Reconsidered: "Energy 1990"

• Recognized advantage of efficiency: conservation cost 20% of new nukes

Energy Analogy: Pacific NW Electricity

- Conservation required new law, policy, practice
- Utilities invest in distributed, small-scale conservation
- Prevented new power plant construction for 20 years

The Challenge: (Re)Capture Natural Capacity

- Create peak and baseload capacity via conservation
- Adapt, (re)naturalize
 built landscape to absorb,
 clean and hold water
- Get it right in new and retrofit development

Portland, Oregon "Green Streets" Program

Green Infrastructure Economic Advantages

- Incremental approach stages funding
- Less capital intensive, lower cost
- Effectively extends existing capacity
- Captures asset value of clean water, soil capacity, open space amenities
- Additional social and economic benefits

CNT Green Infrastructure Tools

Natural Connections: Green Infrastructure in Wisconsin, Illinois, and Indiana

greenmapping.org

What is Green Infrastructure? How Landscapes Work About This Site Resources							
Calculator		Results					
Green Interventions:		The difference between the conventional system and the gree intervention(s) you chose decreases the total 100 year life cycl					
Roof Drains to Raingardens at All Downspouts:		costs and increases benefits by \$46,286! This strategy reduces beak discharge by 44%					
1 Half of Lawn Replaced by Garden with Native Landscaping							
Porous Pavement used on Driveway, Sidewalk and other		Hydrologic Financial Financial Detail Scenario Detail					
Green Roofs:		Hydrologic Results					
 Provide Tree Cover for an Additional 25% of Lot: 	V	Lot Level Improvements: Conventional Green Reduction					
Use Drainage Swales instead of		Lot Discharge (cf) 547 258 52.8%					
Stormwater Pipes.		Lot Peak Discharge 0.16 0.07 55.5%					
Site Statistics:		(cfs)					
 Select a scenario: 		Total Site Improvements: Conventional Green Reduction					
Dense Urban Neighborhood	~	Total Peak Discharge 9.63 5.40 43.9%					
is this an existing site:		(cfs)					
Total size of site: 5	acres	Detention Size Improvements: Conventional Green Reduction					
Number of lots: 44		Total Detention 24 090 11 151 54%					
Average Roof Size, 1000 including Garage:	ft. ^Z	Required (ft ³)					

greenvalues.cnt.org

CNT Green Infrastructure Tools

Outreach

Demonstrations

Green Values Infrastructure Calculator

Analysis currently includes: **Runoff** reduction Avoided conventional infrastructure □ Carbon sequestration □ Air quality □ Trees Value Groundwater Recharge

Permeability Index – Growing the Green

Gray and Green Infrastructure

Washington DC:

Streets and Buildings: 27%

Existing Urban Tree Canopy: 46%

• \$4.7 billion equivalent in structural retention avoided

Source: American Forests

Reversing the Flow – Rethinking Performance

• Performance measured in 'Anti-Gallons' left in natural drainage

• Drainage, flood control, pollution prevention move upstream from treatment plant to water's origins

Effectiveness and Performance

Rainfall Frequency Spectrum (17 Years of Precipitation Data from Chinatown, Chicago)

Percentage of All Precipitation Events

Performance Efficiencies – Filtration/Infiltration

Stormwater Performance Values

How many problems can your community solve for \$3 billion?

- CSO Tunnel:
 - Reduce sewerage overflows to rivers and lakes
- Green Infrastructure Strategies:
 - Reduce sewerage overflows to rivers and lakes
 - Create green space, urban land restoration and real estate value, mitigate global climate change, reduce heat deaths, improve quality of life, water and energy conservation, education, recreation, riparian buffers, flood control, access, unimpaired streams...

Unpaving the Way...

- Re-addressing the design and function of urban streets, parking lots, hardscape surfaces
- Major parts of problem becomes potential solutions

Green Infrastructure Cost-Effectiveness

Seattle SEA Streets program

vegetated strips, no curbs =
11% reduction in
impermeable surface

90+% runoff reduction

25% cost savings compared to conventional design

Green Infrastructure Cost-Effectiveness

Portland Green Streets Program

- Citywide priority included in all development, redevelopment
- 40% cost savings compared to conventional design
- 80-85% CSO peak flow reduction;
- Establishes 1% fee on street construction projects to establish Green Streets fund

Cost Effectiveness – Pervious Pavers

	Permeable			
Item	Pavers	Concrete	Asphalt	
Paving/sf	\$2.25	\$8.00	\$3.00	
Excavating/sf	\$1.00	\$1.00	\$1.00	
Stone/sf	\$2.00	\$1.50	\$1.50	
Installation/sf	\$4.00	(in paving cost)	\$1.50	
Curbs	\$1.50	\$1.50	\$1.50	
Maintenance	\$0.20	0	Not known	
Replacement	None	None	Every 12 years	
Detention/Retention required	None	Yes	Yes	
Storm Sewer System/sf paving	None	\$3.00	\$3.00	
Total/sf	\$10.95	\$14.00	\$11.50	
Total/linear foot – municipal street	\$171	\$218	\$179	
Total/linear ft for 30 ft wide street	\$230	\$280	\$230	Stornwater magazine

Milwaukee School of Engineering

- "Water quality sampling and testing was not possible because the pervious pavements do not discharge runoff even during the simulated rainfalls. The pervious parking lot is 100% effective at eliminating discharge of contaminants through surface runoff during rainfall events." (2007 MMSD Monitoring Report)
- Comparable cost to conventional asphalt

Porous Pavement Performance

- 16 year old porous pavement in Philadelphia reported zero discharge during Hurricane Floyd in 1999 (10" rain/24 hours)
- Functions in cold weather
- Requires vacuum sweeping maintenance

Chicago Sustainable Urban Design

- City governments are at the forefront of sustainable design, and have an obligation to make cities livable places where people want to live, work and play.
- Chicago Land Area = 144,593 ac
 Public Right-of-Way (23%)

 In addition, there are 839 acres of public park space and 53.4 miles of lake and river frontage.

S

Goa

Sustainable

Project

Transportation Improve bus stops with signage, shelters where possible, and lighting; facilitate use of bikes with lanes along Blue Island, and strategically located bike racks

Water Efficiency No use of potable water sources for irrigation, Specify

Chicago River through existing outfall

Energy Efficiency Meet IESNA Standards for Lighting Levels; select optimal street lights for energy efficiency; use reflective surface on sidewalks/roadways to improve lighting; use of renewable energy on designated fixture as demonstration

Stormwater Management Divert 100% of two year storm event from city storm system through the use of pervious pavements, bioswales and recharge of

Native or Climate-adapted, drought tolerant plants for all plantings

Recycling Divert 95% of Construction Waste from Landfills, Specify new materials with a minimum 20% Recycled Content

Urban Heat Island Reduce ambient summer temperatures on streets and sidewalks through use of reflective pavements on roadways, light colored materials on sidewalks and use of trees for shading

Education Provide public outreach materials/self-guided tour brochure to highlight innovative, sustainable design features of streetscape

Chicago Green Alley Program

- 1,900 miles of public alleyways in Chicago, the largest of any city in the world.
- Total of **3**,500 acres of impermeable surface, the equivalent area of over 5 Midway Airports.

Alley Summary Total: 13,000 Alleys

20% Currently Unimproved

20% in Need of Repaire

Smart Growth Saves Money

Prairie Crossing, Gray's Lake, IL

- 300 acre new village left 60% of site undeveloped
- Savings of \$10-15K/acre
- Clusters 359 homes & 36 condominiums vs. 2,400 homes in conventional plan

Smart Growth Saves Money

Prairie Crossing, Gray's Lake, IL

- Swales replace storm sewers: \$1.6M
- 18'-28' roads instead of 32' pavements: \$800K
- Grading costs savings: \$7.5M

Blackberry Creek Alternative Futures Analysis Kane County, Illinois <u>Moderate Density Residential</u>

Conventional

Conservation

(Conservation Design Forum)

Moderate Density Residential Cost Comparison

Conventional \$3,350,000 (\$37,600/lot) / Conservation \$2,880,000 (\$32,400/lot)

Getting to Scale – Water Supply

- Cook County Estimate: Apply Various Green Infrastructure →
- 40% runoff reduction
- Aquifer & lake recharge equivalent to additional supply for >1 million people

Connecting Communities & Water

Toward "New Water Conservatism"

• Trickle Down Economics – cost effective avoidance of capital intensive infrastructure

• 1000 Points of Infiltration – emphasizing distributed approach to manage clean water asset in place

• Supply Side Theory – preventing stormwater treatment also boosts groundwater supply, extends treatment supply of existing systems

• 'Are you more permeable today than you were 4 years ago?'

Thank You

cnt.org/natural-resources

greenvalues.cnt.org

greenmapping.org

