


#### **Congressional directive**

- The Administrator of the Environmental Protection Agency shall transmit to Congress a report summarizing:
  - ... an evaluation of the technologies used by municipalities to address these impacts

## Overview of key data sources

- Extensive literature reviews
- Existing EPA documentation
  - ▶ Fact sheets
  - ▶ Technical reports
  - ▶ Products of cooperative agreements
- Interviews with municipal officials
- Meeting with key EPA staff in other offices
- Informal peer review by internal and external experts

#### Methodological approach

- Data analysis
  - ▶ Identify common and promising technologies used by municipalities to control CSOs and SSOs
    - Interviews with municipal officials
    - Extensive literature review
  - Develop technology descriptions summarizing available technologies and factors influencing their effectiveness
    - Existing EPA reports
    - **■** Extensive literature review

#### Methodological approach

#### Data analysis

- ▶ Describe recent technological innovations that show promise in controlling CSOs and SSOs
  - Meetings with key staff in other EPA offices
  - Extensive literature review

## Methodological approach

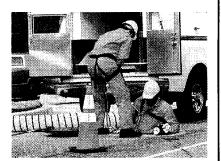
#### Outreach

- ▶ Informal peer review of technology descriptions
  - Experts within and outside EPA

#### Data considerations

- ▶ Relied on existing information to characterize performance
- ▶ Difficult to compare certain types of technologies

#### Key research questions


- What technologies have been used by municipalities to control CSOs and SSOs?
- What factors influence the effectiveness of these technologies?
- Have there been any recent technological innovations that have shown real promise in the control of CSOs or SSOs?

# What technologies have been used to control CSOs and SSOs?

- Wide-range of technologies available
- Grouped technologies into five key categories:
  - ▶ Operations and maintenance activities
  - **▶** Collection system controls
  - ▶ Storage facilities
  - ➤ Treatment technologies
  - ▶ Low impact development techniques

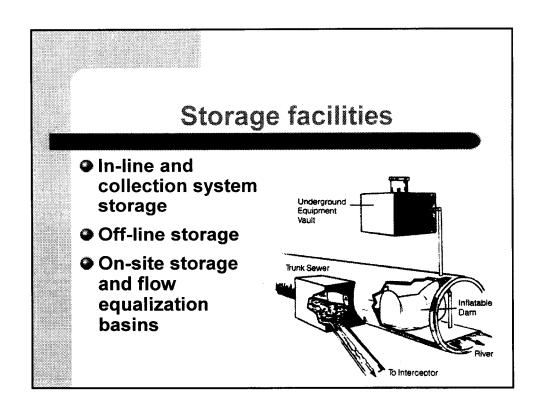
# Operation and maintenance practices

- Sewer cleaning and flushing
- Sewer inspection and testing
- Source control and pollution prevention
- Reporting and public notification



# Operation and maintenance practices

| Technology                      | Type of<br>System | Relative<br>Cost | Pollutants/Problems<br>Controlled                                  |
|---------------------------------|-------------------|------------------|--------------------------------------------------------------------|
| Cleaning & flushing             | CSS, SSS          | \$\$             | BOD, TSS, nutrients,<br>toxic substances,<br>pathogens, floatables |
| Inspection & testing            | css, sss          | \$               | VI                                                                 |
| Pollution prevention            | CSS, SSS          | \$               | Nutrients, toxic<br>substances, peak wet<br>weather flow rate      |
| Reporting & public notification | CSS, SSS          | \$\$             | Pathogens                                                          |


## **Collection system controls**

- Maximizing flow to the treatment plant
- Inflow reduction
- Manhole repair and rehabilitation
- Sewer repair and rehabilitation
- Private lateral repair and rehabilitation
- Sewer separation
- Monitoring and real-time control



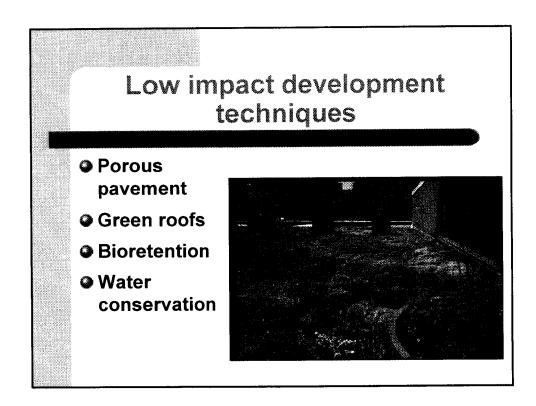
## **Collection system controls**

| Technology                             | Type of<br>System | Relative<br>Cost | Pollutants/Problems<br>Controlled                                  |
|----------------------------------------|-------------------|------------------|--------------------------------------------------------------------|
| Maximizing flow to the treatment plant | CSS, SSS          | \$               | BOD, TSS, nutrients,<br>toxic substances,<br>pathogens, floatables |
| Inflow reduction                       | CSS, SSS          | \$               | I/I, peak wet weather<br>flow rate                                 |
| Manhole rehabilitation                 | CSS, SSS          | \$\$             |                                                                    |
| Sewer rehabilitation                   | CSS, SSS          | \$\$             |                                                                    |
| Private lateral rehabilitation         | CSS, SSS          | \$\$             |                                                                    |
| Sewer separation                       | css               | \$\$\$           | I/I, peak wet weather flow rate                                    |
| Monitoring and real-<br>time control   | CSS, SSS          | \$\$             | Peak wet weather flow rate                                         |



## Storage facilities

| Technology                                   | Type of<br>System | Relative<br>Cost | Pollutants/Problems<br>Controlled                                                                    |
|----------------------------------------------|-------------------|------------------|------------------------------------------------------------------------------------------------------|
| In-line and collection system storage        | CSS, SSS          | \$\$\$           | Peak wet weather flow<br>rate, BOD, TSS,<br>nutrients, toxic<br>substances,<br>pathogens, floatables |
| Off-line storage                             | CSS, SSS          | \$\$\$           |                                                                                                      |
| On-site storage and flow equalization basins | CSS, SSS          | \$\$             |                                                                                                      |


# Treatment technologies

- Supplemental treatment
- Plant modifications
- Disinfection
- Vortex separators
- Floatables control



## Treatment technologies

| Technology             | Type of<br>System | Relative<br>Cost | Pollutants/Problems<br>Controlled               |
|------------------------|-------------------|------------------|-------------------------------------------------|
| Supplemental treatment | CSS, SSS          | \$\$\$           | Peak wet weather flow rate, BOD, TSS, pathogens |
| Plant modifications    | CSS, SSS          | \$\$             | Peak wet weather flow rate, BOD, TSS            |
| Disinfection           | CSS, SSS          | \$\$\$           | Pathogens                                       |
| Vortex separators      | css               | \$\$             | TSS, floatables                                 |
| Floatables control     | css               | \$\$             | Floatables                                      |



# Low impact development techniques

| Technology         | Type of<br>System | Relative<br>Cost | Pollutants/Problems<br>Controlled |
|--------------------|-------------------|------------------|-----------------------------------|
| Porous pavement    | css               | \$               |                                   |
| Green roofs        | css               | \$               | Peak wet weather flow rate        |
| Bioretention       | css               | \$               |                                   |
| Water conservation | CSS, SSS          | \$               |                                   |

## Technologies used

- CSO control tends to rely heavily on structural controls.
  - ▶ Sewer separation (~1/2 of communities)
  - ► Storage facilities (~1/3 of communities)
- SSO control tends to rely heavily on collection system controls.
  - **▶** Inflow reduction
  - ➤ Sewer rehabilitation

#### **Technology effectiveness**

- Enhanced operations and maintenance practices have proven effective in eliminating dry weather overflows from both combined and sanitary sewer systems.
- Technologies must be carefully selected to match site-specific requirements with technical capabilities.

#### Recent innovations

- The majority of recent technological innovations related to CSO and SSO controls have enhanced existing practices, rather than developing new technologies.
- Improved information management systems support the selection of appropriate technologies and their costeffective application.

#### Conclusions

● Technology descriptions will serve as foundation for *Technology Clearinghouse*, also required by the Wet Weather Water Quality Act of 2000.